Evidence for multiple cycles of strand invasion during repair of double-strand gaps in Drosophila.

نویسندگان

  • Mitch McVey
  • Melissa Adams
  • Eric Staeva-Vieira
  • Jeff J Sekelsky
چکیده

DNA double-strand breaks (DSBs), a major source of genome instability, are often repaired through homologous recombination pathways. Models for these pathways have been proposed, but the precise mechanisms and the rules governing their use remain unclear. In Drosophila, the synthesis-dependent strand annealing (SDSA) model can explain most DSB repair. To investigate SDSA, we induced DSBs by excision of a P element from the male X chromosome, which produces a 14-kb gap relative to the sister chromatid. In wild-type males, repair synthesis tracts are usually long, resulting in frequent restoration of the P element. However, repair synthesis is often incomplete, resulting in internally deleted P elements. We examined the effects of mutations in spn-A, which encodes the Drosophila Rad51 ortholog. As expected, there is little or no repair synthesis in homozygous spn-A mutants after P excision. However, heterozygosity for spn-A mutations also resulted in dramatic reductions in the lengths of repair synthesis tracts. These findings support a model in which repair DNA synthesis is not highly processive. We discuss a model wherein repair of a double-strand gap requires multiple cycles of strand invasion, synthesis, and dissociation of the nascent strand. After dissociation, the nascent strand may anneal to a complementary single strand, reinvade a template to be extended by additional synthesis, or undergo end joining. This model can explain aborted SDSA repair events and the prevalence of internally deleted transposable elements in genomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion.

Bloom syndrome is a rare disorder associated with cancer predisposition and genomic instability and is caused by loss of the RecQ helicase BLM. The Drosophila ortholog of BLM (DmBlm) is required for accurate repair of DNA double-strand gaps by homologous recombination. Repair products from DmBlm mutants have shorter repair synthesis tract lengths compared to wild type and are frequently associa...

متن کامل

End-joining repair of double-strand breaks in Drosophila melanogaster is largely DNA ligase IV independent.

Repair of DNA double-strand breaks can occur by either nonhomologous end joining or homologous recombination. Most nonhomologous end joining requires a specialized ligase, DNA ligase IV (Lig4). In Drosophila melanogaster, double-strand breaks created by excision of a P element are usually repaired by a homologous recombination pathway called synthesis-dependent strand annealing (SDSA). SDSA req...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

Residual DNA double strand breaks correlates with excess acute toxicity from radiotherapy

Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...

متن کامل

Evidence that MEK1 positively promotes interhomologue double-strand break repair

During meiosis there is an imperative to create sufficient crossovers for homologue segregation. This can be achieved during repair of programmed DNA double-strand breaks (DSBs), which are biased towards using a homologue rather than sister chromatid as a repair template. Various proteins contribute to this bias, one of which is a meiosis specific kinase Mek1. It has been proposed that Mek1 est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 167 2  شماره 

صفحات  -

تاریخ انتشار 2004